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The cation [(PPh,)(Ph)Pt(p-H)(p-PPh,)Pt(PPh,), 1’ (III), was obtained from 
the reaction of [P~(~,s~-C~H~~)~], trrzns-[Pt(Ph)(acetone)(PPh3)2] [BF,], PPh3 
and Hz. The molecular structure of III is reported. It is shown that the Ph and 
PhaP fragments arise from the cleavage of one molecule of PPhJ. 

Hydride-bridged complexes have been extensively studied in recent years be- 
cause of their interesting structural features [ 11 and their potential use as reac- 
tion intermediates in homogeneous catalysis [ 21. 

A recent publication [ 31 describes the preparation of the dihydro-bridged 
species I and II from reaction 1. 

We now find that the reaction of eq. 2 instead of giving the expected product 
of type (II), gives the cationic species (III). 
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[Pt(COD),] + 2PR3 + Hz + trans-[PtY(acetone)(PRB)2] [BF,] + 

[II W’,I or I?11 PaI (1) 
(COD = 1,5+yclooctadiene; for Y = H, R = Et, Ph and Cy [I]+; for Y = Ph, R = 

Et, WI+) 

[Pt(COD)2] + Hz + 2PPh3 + trans-[Pt(Ph)(acetone)(PPh3)z] [BFd] 

+ 

(2) 

The molecular geometry of III, as its [BF,] salt, was established by X-ray dif- 
fraction [4]. A perspective view of III is shown in Fig. 1. Compound [III] [BF,] 
consists of discrete cations and [BF,] anions. There are two chemically equiv- 
alent but crystellographically independent molecules in the unit cell. The overall 
geometries of the two cations and the two anions do not differ rsignificantly; the 
only relevant (ca. 11 a) difference observed in the two independent cations is the 
Pt-Pt bond length which is 2.889(3) 8, in one of them and 2.912(2) A in the 
other. This difference may be due to packing forces. Similar effects have been ob- 
served in the anion [ (CO),Mo(p-H)Mo(CO), ]- [ 51. The coordination around 
each platinum atom can be described as distorted square planar if one assumes 

ms. 1. A Perspective view o! the cation [(Pph,)(ph)ptOr-H)(-P~~)~(~h,)~] +. The Pt. - - -Pt bond dk- 
tences are 2.88a(2) end 2.912(2) A for the two independent molecules in the unit aell (see text). other 
relevant (else) bond distances (A) end endes (“) are: Pt(l)-P(1) 2.250(7). Pt(l)-P(2) 2.360(7). 
Pt(V--P(3) 2.247(7), Pt(2)-P(8) 2.162(S). Pt(2)_P(4) 2.270(S), Pt(2)_C(l) 2.06(s); Pt(l)-P(S)-Pt(z) 
82-a(2). P(l)_-pt(l)-P(3) aa.8(3). P(l)-Pt(lF-P(2) SS.a(il), P(4)_Pt(2FC(l) 88.0(S), P(S)-Pt(2)_-c(1) 
94.6(s). 
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that also a hydride ligand is bridging the two platinum atoms. Although this 
bridging hydride ligand could not be located with certainty, its presence is con- 
firmed by the ‘H NMR spectrum of III (see later). Three of the Pt-Pt-L bond 
angles (L = PPhJ for Pt(1) and L = Ph for Pt(2)) are larger than 90”, as Pt-Pt-L 
angles are generally in the mononuclear complexes of the type trans-[PtHL(PR3),] 
[6,‘7], and it is noteworthy that in III they are smaller around Pt(2) which is the 
less crowded side of the molecule. 

There are small deviations from planarity as judged from the displacements 
from the least squares plane through Pt, P and C(1) atoms (in the range 0.05- 
0.25 a) possibly due to the presence of bulky phosphine ligands. 

The Pt-Pt distance (av. 2.901(2) f 0.012 a) falls within the expected range if 
one considers that (1) on going from a dihydrido-bridged species, e.g., [ (CO)bW- 
(P-H)~W(CO)~] a- (3.016 a) [8] to the diphosphido-bridged compounds of sim- 
ilar structure, e.g., [(CO),M(p-PEt,),M(CO), ] * (3.053 A for M = W and 
3.057 W for M = MO) [9] there is a lengthening of the M-M bond, (2) that a 
further lengthening of this bond occurs when one of the bridging ligands is a 
hydride and the other a phosphide, e.g., [(q’ -CgH5)(CO)zMo(~-H)(~-PMez)Mo- 
(CO),(n5-C,H,)] (3.267 A) [lo] vs. [(PEt3)(C0)3Mo(~-PMe,),Mo(C0)3(PEt,)l 
(3.089 a) [11] and (3) that the Pt-Pt distance in [(PCys)(EtBSi)Pt(p-H),Pt- 
(Et,Si)(PCy,)] is 2.692 A [ 121. 

The Pt(l)-P(3) and Pt(2)-P(3) distances, 2.247(7) and 2.162(8) A, respective- 
ly, are much shorter than those observed in related platinum(I1) complexes with 
phosphido bridges [ 13,141 and the asymmetry of the bridge may be related to 
the different coordination spheres of Pt(1) and Pt(2). The Pt(l)-P(3)-Pt(2) 
bond angle, 82”, is larger than the Pt-P-Pt bond angles found in the complexes 
mentioned above. Thus, the longer Pt-Pt distance is associated with shorter Pt-P 
bonds and a larger Pt-P-Pt bond angle. The three Pt-P bond-lengths span most 
of the range normally observed Pt’-P bonds [ 151. 

The ‘H, ‘lP and lg5Pt NMR data for III [16] are first order, and are consistent 
with the crystal structure and can all be discussed using a “first-order” 
approximation. 

The ‘H NMR spectrum of the hydride ligand (6 -6.5 ppm) appears as a 
doublet of multiplets flanked by three sets of 1g5Pt-satellites arising from the 
isotopomers (‘g5Pt1)(Pt2)*(ca. 22%), (Pt’ )*(1g5Pta ) (ca. 22%) and (lgsPtl )(lg5Pt2 ) 
(ca. 11%). ((Pt)* indicates a “non-magnetic” Pt.-isotope)). Noteworthy are the 
1J(ig5Pt’,1H) 600 HZ, and lJ(‘gSPta,lH) 324 Hz and the 2J(31P1,1H) 98 Hz while 
2J(31PX,‘H) for x = 2, 3 and 4, fall in the range 7-18 Hz [17]. 

The 31P NMR spectrum shows the four inequivalent phosphorus nuclei (S (P’ ) 
18.1; S (Pa) 15.3; 6 (P’) 121.3 and 6 (P4) 22.9 ppm) each showing coupling to 
both 1g5Pt1 and 19’Pt2 [ 181. While the chemical shifts and most of the coupling 
constants fall in the ranges observed in related bonding situations [ 181, the 

‘J( 19’Pt1, 31P1 ) (3785 Hz) is unusually large and comparable with ‘J( 19sPt,31P) in 
compounds where the phosphorus atom in question has a weakly held electro- 
negative ligand in traras position [ 191, e.g., X = N03- in the series cis-[PtX,(P-n- 
Bu~)~]. While it has been previously observed that the ‘J(19sPt,31P) value for a 
phosphorus atom in trans-position to a bridging hydride is considerably higher 
than that for a phosphorus atom tmns to a terminal hydride [ 31, the value ob- 
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served in III is unusually high and could be taken to indicate that the H-Pt’ inter- 
action is quite weak. 

The lgsPt NMR data for III [ 201 are consistent with the solid state structure 
and were particularly useful for the assignment of the ‘J( 1g5Pt,31P) couplings. 

The question of whether the phenyl group bonded to Pt2 originates from the 
cation tians-[Pt(Ph)(acetone)(PPh3)2]+ or from the cleaved PPh3 was resolved 
by carrying out the reaction 3. As this gave III and not its p-tolyl analogue, we 
conclude that the u-bonded phenyl group comes from the cleavage of PPh,. 

[Pt(COD),] + H2 + 2PPh3 + trans-[Pt@-Tol)(acetone)(PPh3)2]+ (3) 

Similar P-C bond cleavages in PPh, complexes have been frequently ob- 
served [ 211 and such reactions are often responsible for catalyst deactivation. It 
should be pointed out here that the P-C bond cleavage described here occurs at 
ca. 0°C while those observed earlier are reported to require higher temperatures 
[ 131. The detailed mechanism leading to the formation of compounds of type III 
is currently under investigation. 
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